

varies in proportion with the slope of m(t).

The time at which the **slope** of m(t)is at its **maximum** value corresponds to the time at which $x_{PM}(t)$ has **maximum frequency**.

Figure 39

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

The time at which the **slope** of m(t)is at its **minimum** value corresponds to the time at which $x_{PM}(t)$ has **minimum frequency**.

Figure 39

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

Figure 39

The time interval during which the **slope** of m(t) is **increasing** corresponds to the time interval during which $x_{PM}(t)$ has **increasing frequency**.

New Fact: In $x_{PM}(t)$, the **instantaneous frequency** varies in proportion with the **slope** of m(t).

AM, PM, and FM • Sinusoidal Carrier: $A\cos(2\pi f_c t + \phi)$	t
Band-limited to B Bounded by $\pm m_p$ Analog $m(t) \xrightarrow{t} t$	Digital $m(t)$ m(t) is piecewise constant. Its values are selected from a collection of M possibilities.)
AM: $x_{AM}(t) = (A + m(t))\cos(2\pi f_c t + \phi)$	ASK
PM: $x_{PM}(t) = A \cos \left(2\pi f_c t + \phi + k_p m(t) \right)$ Useful for plotting $x_{PM}(t)$ over the time $f(t) = f_c + \frac{k_p}{2\pi} \frac{d}{dt} m(t)$	PSK
FM: $x_{\text{FM}}(t) = A \cos\left(2\pi f_c t + \phi + 2\pi k_f \int_{-\infty}^t m(\tau) d\tau\right)$ $f(t) = f_c + k_f m(t)$	FSK